Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(2): 203-213, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38546039

RESUMO

Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.


Assuntos
Ecossistema , Kelp , Humanos , Conservação dos Recursos Naturais , Biodiversidade , Florestas
2.
Proc Natl Acad Sci U S A ; 121(11): e2303366121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437536

RESUMO

Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.


Assuntos
Microalgas , Alga Marinha , Ecossistema , Orçamentos , Carbono , Mudança Climática , Camada de Gelo , Fitoplâncton
3.
Sci Total Environ ; 918: 170525, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309363

RESUMO

The pressing need to mitigate the effects of climate change is driving the development of novel approaches for carbon dioxide removal (CDR) from the atmosphere, with the ocean playing a central role in the portfolio of solutions. The expansion of seaweed farming is increasingly considered as one of the potential CDR avenues among government and private sectors. Yet, comprehensive assessments examining whether farming can lead to tangible climate change mitigation remain limited. Here we examine the results of over 100 publications to synthesize evidence regarding the CDR capacity of seaweed farms and review the different interventions through which an expansion of seaweed farming may contribute to climate change mitigation. We find that presently, the majority of the carbon fixed by seaweeds is stored in short-term carbon reservoirs (e.g., seaweed products) and that only a minority of the carbon ends up in long-term reservoirs that are likely to fit within existing international accounting frameworks (e.g., marine sediments). Additionally, the tiny global area cultivated to date (0.06 % of the estimated wild seaweed extent) limits the global role of seaweed farming in climate change mitigation in the present and mid-term future. A first-order estimate using the best available data suggests that, at present, even in a low emissions scenario, any carbon removal capacity provided by seaweed farms globally is likely to be offset by their emissions (median global balance net emitter: -0.11 Tg C yr-1; range -2.07-1.95 Tg C yr-1), as most of a seaweed farms' energy and materials currently depend on fossil fuels. Enhancing any potential CDR though seaweed farming will thus require decarbonizing of supply chains, directing harvested biomass to long-term carbon storage products, expanding farming outside traditional cultivation areas, and developing robust models tracing the fate of seaweed carbon. This will present novel scientific (e.g., verifying permanence of seaweed carbon), engineering (e.g., developing farms in wave exposed areas), and economic challenges (e.g., increase market demand, lower costs, decarbonize at scale), many of which are only beginning to be addressed.


Assuntos
Mudança Climática , Alga Marinha , Fazendas , Agricultura , Biomassa , Dióxido de Carbono
4.
Sci Rep ; 14(1): 839, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191572

RESUMO

Kelp forests may contribute substantially to ocean carbon sequestration, mainly through transporting kelp carbon away from the coast and into the deep sea. However, it is not clear if and how kelp detritus is transported across the continental shelf. Dense shelf water transport (DSWT) is associated with offshore flows along the seabed and provides an effective mechanism for cross-shelf transport. In this study, we determine how effective DSWT is in exporting kelp detritus beyond the continental shelf edge, by considering the transport of simulated sinking kelp detritus from a region of Australia's Great Southern Reef. We show that DSWT is the main mechanism that transports simulated kelp detritus past the continental shelf edge, and that export is negligible when DSWT does not occur. We find that 51% per year of simulated kelp detritus is transported past the continental shelf edge, or 17-29% when accounting for decomposition while in transit across the shelf. This is substantially more than initial global estimates. Because DSWT occurs in many mid-latitude locations around the world, where kelp forests are also most productive, export of kelp carbon from the coast could be considerably larger than initially expected.

5.
Ann Rev Mar Sci ; 16: 247-282, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37683273

RESUMO

Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.


Assuntos
Mudança Climática , Ecossistema , Animais , Humanos , Água do Mar , Conservação dos Recursos Naturais , Concentração de Íons de Hidrogênio , Pesqueiros
6.
Ann Bot ; 133(1): 17-28, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38142363

RESUMO

BACKGROUND AND AIMS: Kelp forests are increasingly considered blue carbon habitats for ocean-based biological carbon dioxide removal, but knowledge gaps remain in our understanding of their carbon cycle. Of particular interest is the remineralization of detritus, which can remain photosynthetically active. Here, we study a widespread, thermotolerant kelp (Ecklonia radiata) to explore detrital photosynthesis as a mechanism underlying temperature and light as two key drivers of remineralization. METHODS: We used meta-analysis to constrain the thermal optimum (Topt) of E. radiata. Temperature and light were subsequently controlled over a 119-day ex situ decomposition experiment. Flow-through experimental tanks were kept in darkness at 15 °C or under a subcompensating maximal irradiance of 8 µmol photons m-2 s-1 at 15, 20 or 25 °C. Photosynthesis of laterals (analogues to leaves) was estimated using closed-chamber oxygen evolution in darkness and under a saturating irradiance of 420 µmol photons m-2 s-1. KEY RESULTS: T opt of E. radiata is 18 °C across performance variables (photosynthesis, growth, abundance, size, mass and fertility), life stages (gametophyte and sporophyte) and populations. Our models predict that a temperature of >15 °C reduces the potential for E. radiata detritus to be photosynthetically viable, hence detrital Topt ≤ 15 °C. Detritus is viable under subcompensating irradiance, where it performs better than in darkness. Comparison of net and gross photosynthesis indicates that elevated temperature primarily decreases detrital photosynthesis, whereas darkness primarily increases detrital respiration compared with optimal experimental conditions, in which detrital photosynthesis can persist for ≥119 days. CONCLUSIONS: T opt of kelp detritus is ≥3 °C colder than that of the intact plant. Given that E. radiata is one of the most temperature-tolerant kelps, this suggests that photosynthesis is generally more thermosensitive in the detrital phase, which partly explains the enhancing effect of temperature on remineralization. In contrast to darkness, even subcompensating irradiance maintains detrital viability, elucidating the accelerating effect of depth and its concomitant light reduction on remineralization to some extent. Detrital photosynthesis is a meaningful mechanism underlying at least two drivers of remineralization, even below the photoenvironment inhabited by the attached alga.


Assuntos
Ecossistema , Fotossíntese , Temperatura , Escuridão , Florestas
7.
Mar Environ Res ; 192: 106185, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797426

RESUMO

As a consequence of the increasing human footprint on the environment, marine ecosystems are rapidly transforming into new configurations dominated by early-successional and weedy life forms. Algal turfs, in particular, are emerging as a common and widespread configuration of shallow temperate and tropical reefs, and are predicted to transform reef dynamics and ecosystem services. Restoration is an increasingly used approach to mitigate these transformations, with turf removal being proposed as a tool to shift back the competitive balance and facilitate the recovery of initial species, such as forest-forming seaweeds. Yet, our practical understanding of turf recovery trajectories following removal is limited, and removal success may be hindered by strong feedback mechanisms that reinforce turf dominance once turfs are established. Here we investigate the recovery of algal turfs and their properties (mean height, turf biomass and sediment load) to experimental clearance across six turf-dominated reefs at ca. 9 m in subtropical western Australia. Turf cover, mean height, and sediment loads exhibited a rapid recovery following experimental clearing, with all experimental sites reaching pre-clearing turf conditions between 28 and 46 days. This response was mostly driven by the growth of filamentous turf species, whose cover exhibited a positive relationship with sediment load, and are well-known to rapidly recover after disturbance. Turf abundance and turf properties remained relatively constant for the remaining experimental period. Our results suggest that clearing turfs creates only a small time window for recovery of seaweed forests, which limits the effectiveness of turf clearing as a restoration tool. System-specific quantitative evidence on the recovery capacity of turfs may thus be necessary to guide restoration initiatives and develop decision support systems that account for the risks, feasibility, and costs and benefits of restoring turf-dominated systems to previous configurations.


Assuntos
Antozoários , Alga Marinha , Humanos , Animais , Ecossistema , Sedimentos Geológicos , Florestas , Biomassa , Recifes de Corais
9.
Biol Rev Camb Philos Soc ; 98(6): 1945-1971, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437379

RESUMO

The conservation, restoration, and improved management of terrestrial forests significantly contributes to mitigate climate change and its impacts, as well as providing numerous co-benefits. The pressing need to reduce emissions and increase carbon removal from the atmosphere is now also leading to the development of natural climate solutions in the ocean. Interest in the carbon sequestration potential of underwater macroalgal forests is growing rapidly among policy, conservation, and corporate sectors. Yet, our understanding of whether carbon sequestration from macroalgal forests can lead to tangible climate change mitigation remains severely limited, hampering their inclusion in international policy or carbon finance frameworks. Here, we examine the results of over 180 publications to synthesise evidence regarding macroalgal forest carbon sequestration potential. We show that research efforts on macroalgae carbon sequestration are heavily skewed towards particulate organic carbon (POC) pathways (77% of data publications), and that carbon fixation is the most studied flux (55%). Fluxes leading directly to carbon sequestration (e.g. carbon export or burial in marine sediments) remain poorly resolved, likely hindering regional or country-level assessments of carbon sequestration potential, which are only available from 17 of the 150 countries where macroalgal forests occur. To solve this issue, we present a framework to categorize coastlines according to their carbon sequestration potential. Finally, we review the multiple avenues through which this sequestration can translate into climate change mitigation capacity, which largely depends on whether management interventions can increase carbon removal above a natural baseline or avoid further carbon emissions. We find that conservation, restoration and afforestation interventions on macroalgal forests can potentially lead to carbon removal in the order of 10's of Tg C globally. Although this is lower than current estimates of natural sequestration value of all macroalgal habitats (61-268 Tg C year-1 ), it suggests that macroalgal forests could add to the total mitigation potential of coastal blue carbon ecosystems, and offer valuable mitigation opportunities in polar and temperate areas where blue carbon mitigation is currently low. Operationalizing that potential will necessitate the development of models that reliably estimate the proportion of production sequestered, improvements in macroalgae carbon fingerprinting techniques, and a rethinking of carbon accounting methodologies. The ocean provides major opportunities to mitigate and adapt to climate change, and the largest coastal vegetated habitat on Earth should not be ignored simply because it does not fit into existing frameworks.


Assuntos
Ecossistema , Alga Marinha , Sequestro de Carbono , Mudança Climática , Alga Marinha/metabolismo , Florestas , Carbono/metabolismo
10.
Sci Total Environ ; 885: 163699, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149169

RESUMO

Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.


Assuntos
Ecossistema , Alga Marinha , Dióxido de Carbono , Mudança Climática , Sequestro de Carbono , Carbono
11.
Oecologia ; 200(3-4): 455-470, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344837

RESUMO

Understanding the extent to which species' traits mediate patterns of community assembly is key to predict the effect of natural and anthropogenic disturbances on ecosystem functioning. Here, we apply a trait-based community assembly framework to understand how four different habitat configurations (kelp forests, Sargassum spp. beds, hard corals, and turfs) shape the trophic and energetic dynamics of reef fish assemblages in a tropical-temperate transition zone. Specifically, we tested (i) the degree of trait divergence and convergence in each habitat, (ii) which traits explained variation in species' abundances, and (iii) differences in standing biomass (kg ha-1), secondary productivity (kg ha-1 day-1) and turnover (% day-1). Fish assemblages in coral and kelp habitats displayed greater evidence of trait convergence, while turf and Sargassum spp. habitats displayed a higher degree of trait divergence, a pattern that was mostly driven by traits related to resource use and thermal affinity. This filtering effect had an imprint on the trophic and energetic dynamics of reef fishes, with turf habitats supporting higher fish biomass and productivity. However, these gains were strongly dependent on trophic guild, with herbivores/detritivores disproportionately contributing to among-habitat differences. Despite these perceived overall gains, turnover was decoupled for fishes that act as conduit of energy to higher trophic levels (i.e. microinvertivores), with coral habitats displaying higher rates of fish biomass replenishment than turf despite their lower productivity. This has important implications for biodiversity conservation and fisheries management, questioning the long-term sustainability of ecological processes and fisheries yields in increasingly altered marine habitats.


Assuntos
Antozoários , Kelp , Animais , Ecossistema , Peixes , Estado Nutricional
12.
Mol Ecol ; 31(24): 6473-6488, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36200326

RESUMO

Coastal refugia during the Last Glacial Maximum (~21,000 years ago) have been hypothesized at high latitudes in the North Atlantic, suggesting marine populations persisted through cycles of glaciation and are potentially adapted to local environments. Here, whole-genome sequencing was used to test whether North Atlantic marine coastal populations of the kelp Alaria esculenta survived in the area of southwestern Greenland during the Last Glacial Maximum. We present the first annotated genome for A. esculenta and call variant positions in 54 individuals from populations in Atlantic Canada, Greenland, Faroe Islands, Norway and Ireland. Differentiation across populations was reflected in ~1.9 million single nucleotide polymorphisms, which further revealed mixed ancestry in the Faroe Islands individuals between putative Greenlandic and European lineages. Time-calibrated organellar phylogenies suggested Greenlandic populations were established during the last interglacial period more than 100,000 years ago, and that the Faroe Islands population was probably established following the Last Glacial Maximum. Patterns in population statistics, including nucleotide diversity, minor allele frequencies, heterozygosity and linkage disequilibrium decay, nonetheless suggested glaciation reduced Canadian Atlantic and Greenlandic populations to small effective sizes during the most recent glaciation. Functional differentiation was further reflected in exon read coverage, which revealed expansions unique to Greenland in 337 exons representing 162 genes, and a modest degree of exon loss (103 exons from 56 genes). Altogether, our genomic results provide strong evidence that A. esculenta populations were resilient to past climatic fluctuations related to glaciations and that high-latitude populations are potentially already adapted to local conditions as a result.


Assuntos
Kelp , Refúgio de Vida Selvagem , Canadá , Frequência do Gene , Variação Genética/genética , Filogenia
13.
Sci Adv ; 8(37): eabn2465, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103524

RESUMO

The magnitude and distribution of net primary production (NPP) in the coastal ocean remains poorly constrained, particularly for shallow marine vegetation. Here, using a compilation of in situ annual NPP measurements across >400 sites in 72 geographic ecoregions, we provide global predictions of the productivity of seaweed habitats, which form the largest vegetated coastal biome on the planet. We find that seaweed NPP is strongly coupled to climatic variables, peaks at temperate latitudes, and is dominated by forests of large brown seaweeds. Seaweed forests exhibit exceptionally high per-area production rates (a global average of 656 and 1711 gC m-2 year-1 in the subtidal and intertidal, respectively), being up to 10 times higher than coastal phytoplankton in temperate and polar seas. Our results show that seaweed NPP is a strong driver of production in the coastal ocean and call for its integration in the oceanic carbon cycle, where it has traditionally been overlooked.

14.
PLoS Biol ; 20(8): e3001702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925899

RESUMO

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.


Assuntos
Kelp , Carbono , Sequestro de Carbono , Mudança Climática , Ecossistema
15.
Sci Data ; 9(1): 484, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933515

RESUMO

Net primary productivity (NPP) plays a pivotal role in the global carbon balance but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 246 seaweed taxa at 429 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m-2 yr-1) and are accompanied by detailed taxonomic and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle.


Assuntos
Ecossistema , Alga Marinha , Carbono , Ciclo do Carbono , Meio Ambiente
16.
Ecol Evol ; 12(1): e8538, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127041

RESUMO

Temperate reefs are increasingly affected by the direct and indirect effects of climate change. At many of their warm range edges, cool-water kelps are decreasing, while seaweeds with warm-water affinities are increasing. These habitat-forming species provide different ecological functions, and shifts to warm-affinity seaweeds are expected to modify the structure of associated communities. Predicting the nature of such shifts at the ecosystem level is, however, challenging, as they often occur gradually over large geographical areas. Here, we take advantage of a climatic transition zone, where cool-affinity (kelp) and warm-affinity (Sargassum) seaweed forests occur adjacently under similar environmental conditions, to test whether these seaweed habitats support different associated seaweed, invertebrate, coral, and fish assemblages. We found clear differences in associated seaweed assemblages between habitats characterized by kelp and Sargassum abundance, with kelp having higher biomass and seaweed diversity and more cool-affinity species than Sargassum habitats. The multivariate invertebrate and fish assemblages were not different between habitats, despite a higher diversity of fish species in the Sargassum habitat. No pattern in temperature affinity of the invertebrate or fish assemblages in each habitat was found, and few fish species were exclusive to one habitat or the other. These findings suggest that, as ocean warming continues to replace kelps with Sargassum, the abundance and diversity of associated seaweeds could decrease, whereas fish could increase. Nevertheless, the more tropicalized seaweed habitats may provide a degree of functional redundancy to associated fauna in temperate seaweed habitats.

17.
Glob Chang Biol ; 28(11): 3711-3727, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35212084

RESUMO

The Arctic is among the fastest-warming areas of the globe. Understanding the impact of climate change on foundational Arctic marine species is needed to provide insight on ecological resilience at high latitudes. Marine forests, the underwater seascapes formed by seaweeds, are predicted to expand their ranges further north in the Arctic in a warmer climate. Here, we investigated whether northern habitat gains will compensate for losses at the southern range edge by modelling marine forest distributions according to three distribution categories: cryophilic (species restricted to the Arctic environment), cryotolerant (species with broad environmental preferences inclusive but not limited to the Arctic environment), and cryophobic (species restricted to temperate conditions) marine forests. Using stacked MaxEnt models, we predicted the current extent of suitable habitat for contemporary and future marine forests under Representative Concentration Pathway Scenarios of increasing emissions (2.6, 4.5, 6.0, and 8.5). Our analyses indicate that cryophilic marine forests are already ubiquitous in the north, and thus cannot expand their range under climate change, resulting in an overall loss of habitat due to severe southern range contractions. The extent of marine forests within the Arctic basin, however, is predicted to remain largely stable under climate change with notable exceptions in some areas, particularly in the Canadian Archipelago. Succession may occur where cryophilic and cryotolerant species are extirpated at their southern range edge, resulting in ecosystem shifts towards temperate regimes at mid to high latitudes, though many aspects of these shifts, such as total biomass and depth range, remain to be field validated. Our results provide the first global synthesis of predicted changes to pan-Arctic coastal marine forest ecosystems under climate change and suggest ecosystem transitions are unavoidable now for some areas.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Canadá , Florestas
18.
J Phycol ; 58(2): 198-207, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092031

RESUMO

The UN Decade of Ecosystem Restoration is a response to the urgent need to substantially accelerate and upscale ecological restoration to secure Earth's sustainable future. Globally, restoration commitments have focused overwhelmingly on terrestrial forests. In contrast, despite a strong value proposition, efforts to restore seaweed forests lag far behind other major ecosystems and continue to be dominated by small-scale, short-term academic experiments. However, seaweed forest restoration can match the scale of damage and threat if moved from academia into the hands of community groups, industry, and restoration practitioners. Connecting two rapidly growing sectors in the Blue Economy-seaweed cultivation and the restoration industry-can transform marine forest restoration into a commercial-scale enterprise that can make a significant contribution to global restoration efforts.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Alga Marinha , Alga Marinha/crescimento & desenvolvimento
19.
J Phycol ; 57(6): 1721-1738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510441

RESUMO

The genomic era continues to revolutionize our understanding of the evolution of biodiversity. In phycology, emphasis remains on assembling nuclear and organellar genomes, leaving the full potential of genomic datasets to answer long-standing questions about the evolution of biodiversity largely unexplored. Here, we used whole-genome sequencing (WGS) datasets to survey species diversity in the kelp genus Alaria, compare phylogenetic signals across organellar and nuclear genomes, and specifically test whether phylogenies behave like trees or networks. Genomes were sequenced from across the global distribution of Alaria (including Alaria crassifolia, A. praelonga, A. crispa, A. marginata, and A. esculenta), representing over 550 GB of data and over 2.2 billion paired reads. Genomic datasets retrieved 3,814 and 4,536 single-nucleotide polymorphisms (SNPs) for mitochondrial and chloroplast genomes, respectively, and upwards of 148,542 high-quality nuclear SNPs. WGS revealed an Arctic lineage of Alaria, which we hypothesize represents the synonymized taxon A. grandifolia. The SNP datasets also revealed inconsistent topologies across genomic compartments, and hybridization (i.e., phylogenetic networks) between Pacific A. praelonga, A. crispa, and putative A. grandifolia, and between some lineages of the A. marginata complex. Our analysis demonstrates the potential for WGS data to advance our understanding of evolution and biodiversity beyond amplicon sequencing, and that hybridization is potentially an important mechanism contributing to novel lineages within Alaria. We also emphasize the importance of surveying phylogenetic signals across organellar and nuclear genomes, such that models of mixed ancestry become integrated into our evolutionary and taxonomic understanding.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Kelp , Sequência de Bases , Hibridização Genética , Kelp/classificação , Kelp/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
20.
Science ; 373(6557): 863, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34413228
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...